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Abstract 

The purpose of this study is to evaluate the feasibility of remote memory access (RMA) 

programming on shared memory parallel computers.  We discuss different RMA based 
implementations of selected CFD application benchmark kernels and compare them to 

corresponding message passing based codes. For the message-passing implementation 

we use MPI point-to-point and global communication routines. For the RMA based 

approach we consider two different libraries supporting this programming model. One is 

a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is 

the MPI-2 extension to the MPI Standard. We give timing comparisons for the different 

implementation strategies and discuss the performance. We also include the application 

programming interface (API) for SMPlib at the end of this report. 

1. Introduction 

In this study we will compare different programming paradigms for the parallelization of large 
scientific applications on shared memory computer architectures. The applications we consider 
are such that they can be divided into sub-problems so that many processes can work together on 
different parts of the same data structure.  

Parallel programming on a shared memory machine can take advantage of the globally shared 
address space. Compilers for shared memory architectures usually support multi-threaded 
execution of a program. Loop level parallelism can be exploited by using compiler directives 
such as those defined in the OpenMP standard [5]. Lightweight threads are automatically created 
for performing the work in parallel. Data transfer between threads is done by direct memory 
references. This approach provides a relatively easy way to develop parallel programs but has 
disadvantages. It is difficult to achieve scalability for a large number of processors and it is not 
portable to distributed memory architectures. 
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The programming models considered in this study assume that each process has its own local 
memory. Message passing is a well understood programming paradigm for this situation. The 
computational work and the associated data are distributed between a number of processes. If a 
process needs to access data located in the memory of another process, it has to be 
communicated via the exchange of messages. The data transfer requires cooperative operations 
to be performed by each process, that is, every send must have a matching receive. The regular 
message passing communication achieves two effects: communication of data from sender to 
receiver and synchronization of sender with receiver. The Remote Memory Access (RMA) 
programming model is also based on the concept of processes with their own local memory, but 
it separates the communication and synchronization step. A process is allowed to read from or 
write to data areas located on other processes, without the exchange of messages. Data transfer 
between two processes is performed by only one side and does not require a matching operation 
by the other process. The correct ordering of memory accesses has to be imposed by the user 
through explicit synchronization.  

Both programming models are applicable on distributed as well as shared memory computer 
architectures. Message passing on a shared memory machine may be implemented as memory-
to-memory, however, libraries supporting this paradigm, such as the MPI 1.1 standard [3], often 
impose a high latency. The RMA functionality allows implementations to directly take 
advantage of fast communication mechanisms provided by the hardware platform, such as 
coherent shared memory, hardware supported put and get operations or communication co-
processors.  

In this study we evaluate their effect on performance for programming shared memory 
architectures. We first discuss different RMA programming paradigms in Section 2, present 
benchmark implementations with RMA in Section 3, compare the performance results in Section 
4, and conclude in the last section. 

2. Library Support for Different Parallel Programming Paradigms 

To study the impact on performance of the message passing vs. RMA parallel programming, we 
chose two libraries supporting these programming models. 

2.1. MPI and MPI-2  

MPI  (Message Passing Interface) [3] is a widely accepted standard for writing message passing 
programs. It is a standard programming interface for the construction of a portable, parallel 
application in Fortran or in C, especially when the application can be decomposed into a fixed 
number of processes operating in a fixed topology (for example, a pipeline, grid, or tree). MPI 
provides the user with a programming model where processes communicate by calling library 
routines to send and receive messages to other processes. Pairs of processes can perform point-
to-point communication to exchange messages. A group of processes can call collective 
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communication routines to implement global operations such as broadcasting values or 
calculating global sums. Global synchronization can be implemented by calls to barrier routines. 
Asynchronous communication is supported by providing calls for probing and waiting for certain 
messages. For all communication operations the sending as well as the receiving side have to 
issue calls to the message-passing library.  

MPI-2 [4] is an extension to the MPI standard. MPI-2 provides one-sided communication 
routines to support the RMA programming model. These routines extend the communication 
mechanism of MPI by allowing one process to specify all communications parameters. RMA is 
initiated with a collective library call where each process specifies an area of memory that is 
made accessible to remote processes. This shared memory buffer is used for the exchange of 
data. A call to a one-sided communication routine needs to be issued only by one process and 
does not require a matching call by sender or receiver respectively. MPI-2 provides point-to-
point and barrier synchronization operations and it is the user’s responsibility to ensure memory 
coherence. The MPI-2 extensions that we used in our study are:  

• MPI_Win_create: A collective routine for setting up a shared memory buffer. 

• MPI_Get, MPI_Put: Routines for transferring data to and from a shared memory buffer. 

• MPI_Win_fence: A routine for performing collective synchronization. 

MPI-2 extensions also include routines for point-to-point synchronization, however, they were 
not available on the hardware platforms that we used for our study.  

The SGI Origin offers the SHMEM library which provides similar functionality as the MPI-2 
extensions for one-sided communication. Since this library is only available on SGI systems we 
chose the MPI-2 extensions for our study to have more potential for portability to other systems. 

2.2. MLP and SMPlib 

MLP is a methodology of programming developed by Taft [8] at NASA Ames Research Center 
for achieving high levels of parallel efficiency on shared memory machines. It exploits two-level 
parallelism in applications: coarse-gained (domain decomposition) with forked processes and 
fine-grained (loop level) with OpenMP threads. Communication between MLP processors is 
done by directly accessing data in a shared memory buffer, and as a result MLP has very high 
bandwidth and low latency. Coupled with the second level parallelism MLP has demonstrated 
scalability on more than 500 processors for real CFD problems [8]. 

The shared-memory parallel programming model in MLP is summarized in Figure 1. A program 
starts with a single process, the master process, to perform initialization, such as reading input 
data from a file, and set up necessary shared memory buffers (or arena) for communication. 
Additional processes are then created via the fork call. The forked processes have a private copy 
of the virtual memory of the master process except for the shared memory arena. Thus, 
broadcasting any input data is not necessary in this model as it would have been required in a 
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message passing program. The master and its forked processes then work on the designated code 
segments in parallel and synchronize as needed. 

The MLP library (MLPlib) consists of only three routines: 

MLP_getmem to get a piece of shared memory, MLP_forkit 

to spawn processes and MLP_barrier to synchronize 

processes. For completeness, we include the description of the 
three MLP routines in Appendix A as taken from [8]. The 
simplicity of MLPlib makes programming with MLP relatively 
easier, even though a user still needs to perform the tedious task 
of domain decomposition. The main limitation of MLPlib is its 
lack of point-to-point synchronization primitives, which are 
usually required for more general class of applications. 

We have extended the MLP concept to overcome some of its 
limitations and developed the SMP library (SMPlib). SMPlib 

includes the SMP_Signal and SMP_Wait primitives for 

point-to-point synchronization between processors. A processor 

may update a shared buffer and use SMP_Signal to inform 

another processor the availability of the data; the other 

processor can use SMP_Wait for the notification of the signal to copy data from the shared 

buffer. The Signal/Wait approach is very flexible and in general has less communication 
overhead than a global barrier. In the meantime SMPlib still maintains a simple programming 
interface like MLP and can easily be applied to more general applications. The complete 
description of the SMPlib API is included in Appendix B. 

In the current study, we focus on the effectiveness of the first level parallelism with SMPlib, that 
is, the fine-grained loop-level parallelism with OpenMP is not considered.  

SMPlib supports RMA programming but employs a somewhat different programming paradigm 
from MPI-2.  The properties of the different programming paradigms are summarized in Figure 2 
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Figure 2: Properties of the different programming paradigms. 

3. Benchmark Implementations 

We used the NAS Parallel Benchmarks (NPBs) [1] for our RMA study. The NPB suite consists 
of five kernels and three simulated CFD applications derived from important classes of 
aerophysics applications. The five kernels mimic the computational core of five numerical 
methods used by CFD applications.  The simulated CFD applications reproduce much of the data 
movement and computation found in full CFD codes. We chose a subset of the NPB consisting 
of the three application benchmarks (BT, SP and LU) for our study.  

3.1. Porting Message Passing to RMA 

As a basis for our evaluation we started with the MPI implementation NPB2.3 [2] of the 
benchmarks, which we ported to the RMA programming model. We adopted the domain 
decomposition strategy of these implementations which we will explain in more detail below. 
Porting from message passing to RMA consists of three major steps. In the RMA initialization 
phase a shared memory buffer has to be allocated. This buffer will be used to hold data that 
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needs to be accessed by remote processes. The second step consists of replacing the calls to the 
message passing routines by read and write operations from and to the shared memory buffer. At 
last necessary calls to synchronization routines have to be inserted. 

There are two approaches to synchronization. A collective call to a barrier routine will cause 
all processes to wait until the last process has reached the barrier. Another approach is point-to-
point synchronization where a process waits for one particular named process until it receives a 
signal.  

In all of our implementations each process logically owns a specific part of the shared memory 
buffer. We distinguish between two methods to update the values in the shared memory buffer. 
A process can place values to be communicated in its own segment of the buffer. The remote 
process requiring the data will read it from there. We refer to this approach as the GET method. 
Alternatively a process can write data directly into a remote processes segment of the shared 
memory buffer. We refer to this approach as the PUT method. Figure 3 illustrates the two 
methods. 

 

The code fragments in Figure 4 show the nature of the coding differences when employing the 
various communication libraries. The code implements the communication of one word in 
variable A from process P1 to process P2. In the MPI message passing version process P1 issues 

a call to mpi_send while process P2 makes the corresponding call to mpi_receive. When 

using the MPI-2 extension for one-sided communication, process P1 writes A to the shared 

memory buffer. Then the processes synchronize via a call to mpi_win_fence before process 

P2 issues a call to mpi_get to read A. For the SMPlib based implementation we show the use 

of point-to-point synchronization. Process P1 write A to its segment of the shared memory 
buffer. For simplicity we assume that the size of the segment is 1 and use the process ID of P1 to 
index the buffer. Then process P1 sends a signal to P2. Process P2 waits until it receives a signal 
from P1 and then reads the updated value from the buffer. 

 

 

 

 

Figure 3: Two ways of updating the shared memory buffer. Arrows with 
solid line indicate writing, while the dashed lines indicate reading. 
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MPI 

if (iam .eq. P1) then  
   call mpi_send(…A,  P2,…) 
endif 
if (iam eq. P2) then 
   call mpi_receive(…B, P1,…) 
endif 

MPI-2 

if  (iam .eq. P1) then 
   buffer (1) = A 
endif 
call mpi_win_fence(…)  
if (iam .eq. P2) then 
   call mpi_get (..buffer, P1,…) 
   B = buffer (1) 
endif 

SMP Signal/Wait 

if (iam .eq.P1) then 
   buffer (P1) = A 
   call smp_signal (P2) 
endif 
if (iam .eq. P2) then 
   call smp_wait (P1) 
   B = buffer (P1) 
endif  

Figure 4: Code examples for communication operations 

3.2. BT and SP Benchmarks 

BT and SP benchmarks have a similar structure: each solves three systems of equations resulting 
from an approximate factorization that decouples the x, y and z dimensions of 3-dimensional 

Navier-Stokes equations. These systems are block tridiagonal of 5×5 blocks in the BT code and 
scalar pentadiagonal in the SP code. Each direction is alternatively swept. 

The MPI implementations of BT and SP employ a multi-partition scheme [2] in 3-D to achieve 
good load balance and coarse-grained communication. In this scheme, processors are mapped 
onto sub-blocks of points of the grid in a special way such that the sub-blocks are evenly 
distributed along any direction of solution, as illustrated in Figure 3 for a 2-D case. Throughout 
the sweep in one direction, each processor starts working on its sub-block and sends partial 
solutions to the next processor before going into the next stage. Communications occur at the 
sync points as indicated by gray lines in Figure 5. 

In the RMA implementations of the benchmarks, communications are handled by data 
exchange through the shared memory buffers and proper synchronization primitives. As 
mentioned in Section 3.1, we have used two methods to handle the communication at the sync 

points in the solvers: barrier synchronization (BAR) and signal/wait (SW). With the BAR 
method, all processors copy local data to their designated shared memory buffers and place a 
global barrier before copying the shared data to the local area. With the SW method, each 
sending processor copies local data to its designated shared memory buffer and signals its 
neighbor the shared data is ready; each receiving processor waits for a signal from its neighbor 
and, then, copies the shared data to its local area. In essence the SW approach is very similar to 
SEND/RECV in the message passing except that data are exchanged directly through the shared 
memory buffer rather than messages. To avoid that data in the shared buffer is overwritten before 
it has been read in the previous stage, we have subdivided each shared buffer area into separate 
sections for each stage. 



 - 8 - 

Besides in the main solvers, 
communications also occur in 
copy_faces where all processors 
exchange solutions for the ghost points 
in all three directions. It is 
straightforward to use global barrier 
synchronization for this case. 

We also produced versions of BT using 
the PUT and GET methods for updating 
the shared memory buffer as described 
in Section 3.1. The performance of 
different versions will be compared in 
Section 4. 

3.3. LU Benchmark 

LU benchmark employs the symmetric successive over-relaxation (SSOR) scheme to solve 3-D 
Navier-Stokes equations. The inherited data dependences in the scheme require the solutions at 
(i+e,j,k), (i,j+e,k) and (i,j,k+e), where e=–1 or +1, be available before the calculation at (i,j,k) is 
performed. The MPI implementation of LU utilizes a 2-D partitioning of the grid onto processors 
and a 2-D coarse-grained pipeline model [9] for parallelization. To illustrate the pipeline method 
Figure 6 shows a case of a 1-D pipeline in which data are distributed in the J direction among 
four processors. Processor 0 starts from the low-left corner and works on one slice of data for the 
first K value. Other processors are waiting for data to be available. Once processor 0 finishes its 
job, processor 1 can start working on its slice for the same K and, in the meantime, processor 0 
moves onto the next K. This process continues until all the processors become active. Then they 
all work concurrently to the opposite end, as indicated by the large arrow in the figure. The cost 
of pipelining results mainly from the wait in startup and finishing. A 2-D pipelining can reduce 
the wait cost and was adopted in the MPI version of LU. 

 

 

 

 

 

Figure 5: The multi-partition scheme in 2-D. Four 
processors are evenly mapped onto 4x4 sub-blocks in a 2-
D grid. The solving (or sweep) direction is in vertical. 
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Implementing the SMPlib version of LU 
is relatively simple because of the use of 
the Signal/Wait functions for point-to-
point synchronizations in the 2-D 
pipeline. Shared memory buffers were 
allocated large enough to hold boundary 
points in one K slice assigned to each 
processor. Special care has been taken to 
guide the update of the shared memory 
buffers during the K sweep so that these 
buffers are properly copied to the local 
areas before their values are overwritten 
at the next K slice. We did not use 
global barrier synchronization to 
synchronize communications in the pipeline for the two reasons: use of a global barrier would be 
very expensive, especially when the barrier is inside a loop (K) nest, and bookkeeping the global 
synchronization points would increase the porting effort. For the same reason we did not 
implement an MPI-2 version of LU. 

4. Timing Results 

We tested our RMA implementations of the benchmarks on two platforms: an SGI Origin 2000 
and a SUN Enterprise 10000. The Origin 2000 consists of 512 MIPS R12K 400MHz processors, 
each with 8MB L2 cache, running IRIX 6.5. The SGI MIPSpro 7.3.1.2m compiler was used for 
compilation and the Message Passing Toolkit (MPT) 1.4.0.3 for MPI codes. A highly tuned, 
efficient implementation of MPI is part of the MPT. Within a single system, MPI messages are 
moved memory-to-memory. Between nodes of an Silicon Graphics Array system, MPI messages 
are passed over a HIPPI network. Latency and bandwidth are intermediate between memory-to-
memory data exchange and socket-based network communication. 

 The SUN E10K consists of 16 Ultra SPARC 333MHz processors, running Solaris 7. The Sun 
Workshop 6 compiler was used in the compilation and SunHPC 3.1 for MPI codes. 

There are different classes of the benchmarks depending on their problem size. For our study we 
considered class A (64x64x64 grid) and class B (102x102x102 grid). 

4.1. Comparison of Different RMA Implementation Strategies 

We chose the BT benchmark of class A to compare different implementation strategies based on 
the RMA programming model. We obtained the timings on the SGI Origin. In a first experiment 
we compared the PUT versus the GET method as described in Section 3.1. For both the SMPlib 
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Figure 6: 1-D pipeline used in the SSOR solver of LU. 
Data are distributed in the J dimension. 
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and the MPI-2 library, the GET method showed a better performance than the PUT method. The 
maximum performance advantage of GET versus PUT was about 15% for 256 processes. In the 
left panel of Figure 7 we show the comparison of SW versus BAR implementation, based on the 
SMPlib library. The numbers of MFLOP per second as plotted are those reported by the 
benchmarks and reflect the scalability. The SW version shows a strong performance advantage 
over the BAR version, which is due to less time spent in process synchronization. The 
comparison of SMPlib versus MPI-2 is shown in the right panel of Figure 7. Since MPI-2 
extensions for point-to-point synchronization are not available on the SGI Origin we only 
compared the BAR versions of the benchmarks. The results were very similar with a slight 
performance advantage for the MPI-2 based code. We expect MPI-2 to behave close to the 
SMPlib SW version once the signal and wait extensions of MPI-2 become available on the SGI 
Origin. 

0

10000

20000

30000

M
F

LO
P

/s

0 50 100 150 200 250

Number of Processors

 SMP-bar
 SMP-sw

BT
Class A

0 50 100 150 200 250

Number of Processors

 MPI2
 SMP-bar

 

Figure 7: Performance comparison of different implementation strategies based on RMA. 

4.2. Comparison of RMA versus Message Passing 

In this section we compare the SMPlib based BAR and SW GET versions on the code against the 
MPI message passing version for different benchmarks, problem classes, and computer 
architectures. The reasons why we chose SMPlib instead of MPI-2 are: 

• MPI-2 extensions are not available on our SUN evaluation platform while the SMPlib library 
could be easily ported to the SUN. 

• MPI-2 extensions for signal and wait were not available on either platform. 

We expect similar behavior for MPI-2 once the full functionality becomes available on all 
platforms. 

The MFLOP/s results obtained on the SGI Origin 2000 are summarized in Figure 8 for all three 
benchmarks and two problem sizes (class A and class B). A straight line in the figure is a 
reference of a linear speedup based on the timing from the single process run. In all cases, the 
SMP-sw versions show the best performance, especially on a large number of processors. The 
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MPI versions of BT and SP performed slightly better than the SMP-bar versions for the class A 
problem, however, the MPI scaling suffered a performance drop on more than 200 processors for 
the class B problem. In fact the SMP-bar versions even outperformed MPI. 
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Figure 8: Comparison of MPI, SMP-sw and SMP-bar implementations of the three benchmarks on the 
SGI Origin 2000. 

OpenMP implementations of the same benchmarks suffer from the fact that parallelism is only 
exploited at the outermost loop level. The scalability is therefore restricted by the number of grid 
points in one dimension, which is 64 for class A and 102 for class B. 

The MFLOP/s results obtained on the SUN E10K are summarized in Figure 9 for all three 
benchmarks, class A problem size. Because of the limited number of processors in the machine, 
the MPI, SMP-sw and SMP-bar implementations of the benchmarks show very similar 
performance. However, the SMPlib version of LU does show better performance than the MPI 
version on 16 processors, which may indicate the lower overhead of the SMPlib Signal/Wait 
functions over the MPI send/receive. 
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Figure 9: Comparison of MPI, SMP-sw and SMP-bar implementations of the three benchmarks on the 
Sun E10K. 

5. Related Work 

In [8] Taft discusses the performance of a large CFD application. He compares the scalability of 
message passing versus hybrid parallelization based on RMA and OpenMP. The RMA 
programming employed in this paper has extended synchronization functionality from the one in 
[8], but we only consider outer level parallelization. 

There are number of papers reporting on comparisons of different programming paradigms. A 
comparison of message passing and RMA is given in [6] and [7]. The study uses the SGI 
SHMEM library for RMA programming. The programming paradigm supported and the 
functionality provided by the SHMEM library is similar to MPI-2. With SMPlib we are 
employing a somewhat different programming paradigm and compare it to both, message 
passing as well as one-sided communication. 

6. Conclusion 

We have ported several benchmarks from the NPB2.3 suite to the RMA programming model. 
Porting the code was straightforward, since we could adopt the same domain decomposition 
approach in the message passing implementation. We compared different implementation 
strategies of RMA for shared memory computer architectures. Point-to-point synchronization 
and the GET memory access showed the best performance. In comparing RMA versus message 
passing we found that RMA yielded better scalability.  

The MPI-2 extensions for one-sided communication provide support for RMA programming, but 
the full functionality is currently not available on many hardware platforms. As an alternative 
programming paradigm to the one provided by the MPI-2 extensions we have implemented the 
SMPlib library for RMA support. SMPlib provides functionality for process creation, allocation 
of shared memory as well as barrier and point-to-point synchronization. The library could be 
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easily ported to different hardware platforms and the performance was comparable to MPI-2 
based code where available. 

We are currently working on porting full-scale applications to the RMA programming model. 
We also plan develop hybrid versions of these applications with RMA on the outer and OpenMP 
on the inner level of parallelism. 
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Appendix A. The Multi-Level Parallelization Library (MLPlib) 

The MLP library was developed by James Taft at NASA Ames Research Center for multi-level 
parallelization. The following summarizes the three routines included in MLPlib for the 
FORTRAN language as described in [8]. 

A.1.   Allocating the Shared Memory Segment 

subroutine mlp_getmem(numvar,isizes,ipoint) 
integer*8 numvar,isizes(numvar),ipoint(numvar) 

where: 

numvar :  the total number of shared arrays, 

isizes :  an array containing sizes of the arrays in bytes, 

ipoint :  an array containing pointers to shared arrays. 

This routine sets up a shared memory segment and establishes a number of pointers to shared 

arrays with sizes contained in the isizes array. The mlp_getmem routine is called only once. 

It must be called before the mlp_forkit routine described below. 

A.2.   Spawning MLP Processes 

subroutine mlp_forkit(nowpro,numpro,numcps,idopin) 
integer*4 nowpro,numpro,numcps(numpro),idopin 

where: 

numpro : the number of MLP processes, 

nowpro : the returned logical id of the current MLP process (1,2,...,numpro), 

numcps : array designating how many OpenMP threads per MLP process, 

idopin : if set to one (1), pin the processes. 

This routine creates the numpro number of identical processes and is called once. 

A.3.   Barrier Synchronization of MLP Processes 

subroutine mlp_barrier(nowpro,numpro) 
integer*4 nowpro,numpro 

where: 

numpro : the number of MLP processes, 

nowpro : logical id of the current MLP process. 

This routine barrier-synchronizes all MLP forked processes.
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Appendix B. The Shared Memory Parallelization Library (SMPlib) 

The SMPlib routines are designed for parallel processing on a shared memory machine. The 
concept is derived from the MLP library ([8], Appendix A), but with extended functions and 
syntax. The library contains interfaces for both C and FORTRAN languages and is compatible 
with 32-bit and 64-bit architectures. This document summarizes the SMPlib v2.1 application 
programming interface (API). 

B.1.   Environment Variables 

   SMP_NUM_PROCS - Number of processes to be forked. 
                   Default uses the argument from SMP_FORK() 
                   or SMP_FORKTHREAD(). 
   OMP_NUM_THREADS - Number of threads per process. 
                   Default uses the argument from SMP_FORKTHREAD() 
                   or 1 for SMP_FORK(). 
   SMP_TMPDIR    - Directory for temporary SMP files. 
                   Default is "." (the current directory). 
   SMP_DEBUG     - Debugging flag, default is 0. 
                   0 no debugging information, 
                   1 debugging information printed to <stdout>, 
                   2 debugging information written to smp_lib.log_myid. 
   SMP_TLOG      - Time profiling flag, default is 0. 
                   This flag is meaningful only if the TLOG option is compiled into 

SMPlib to perform time profiling of SMPlib calls. 
   SMP_PINIT     - The “pin-to-node”  flag, default is 0. 
                   This flag is meaningful for jobs running on SGI Origin machines 

under the PBS scheduler (i.e. when PBS_NODEMASK is defined). 

B.2.   Prototype Definition 

The prototype for the C interface is defined in "smp_lib.h" and for the FORTRAN interface 
is defined in "smp_libf.h".  

The prototype for the timer routines is defined in "smp_timer.h" (C interface) and 
"smp_timerf.h" (FORTRAN interface). 

The FORTRAN interface has a very similar syntax as the C interface except for the routines 
SMP_GETSHMEM and SMP_GETLOCMEM.  The routine SMP_GETSHMEMP is defined for a 
platform that supports the Cray pointer. 
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B.3.   Process Creation 

   void SMP_Init(void); 

   SUBROUTINE SMP_INIT 
 – initializes SMPlib parameters, should be the first thing to call. The environment 

variable SMP_TMPDIR is used to define the directory for temporary SMP files, 
default to "." (the current directory). Environment variable SMP_DEBUG is checked. 

 
   int SMP_Fork(int num_procs); 

   INTEGER FUNCTION SMP_FORK(NUM_PROCS) 
   INTEGER NUM_PROCS 
 – forks"num_procs" processes and return the rank (0 to num_procs-1) of the 

current process in the process group. If num_procs=0, the environment variable 
SMP_NUM_PROCS will be used.  If SMP_NUM_PROCS is undefined, no subprocess 
is created, i.e. num_procs=1 is used.  Number of threads per process is defined by 
the environment variable OMP_NUM_THREADS.  If OMP_NUM_THREADS is 
undefined, one (1) is assumed.  

 
   int SMP_Forkthread(int num_procs, int num_threads[]); 

   INTEGER FUNCTION SMP_FORKTHREAD(NUM_PROCS, NUM_THREADS) 
   INTEGER NUM_PROCS, NUM_THREADS(0:*) 
 – forks "num_procs" processes and return the rank (0 to num_procs-1) of the 

current process in the process group. If num_procs=0, the environment variable 
SMP_NUM_PROCS will be used.  If SMP_NUM_PROCS is undefined, no subprocess 
is created, i.e. num_procs=1 is used. In addition, num_threads[i] of  threads is 
specified for process i.  If num_threads[i] is 0, the variable 
OMP_NUM_THREADS will be checked; if OMP_NUM_THREADS is undefined, one (1) 
is assumed.  

 
   void SMP_Finish(void); 

   SUBROUTINE SMP_FINISH 
 – finishes and cleans up things, should be called by all processes. 
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B.4.   Memory Allocation 

   void *SMP_Getshmem(size_t size); 
 – C: gets a piece of shared memory with "size" bytes.  A pointer to the allocated 

memory segment is returned. The function is usually called before SMP_Fork. But 
the function may also be used after SMP_Fork, in which case it must be called by all 
the processes with the same requested size. The same restriction applies to the 
FORTRAN SMP_GETSHMEM and SMP_GETSHMEMP routines as well. 

   SUBROUTINE SMP_GETSHMEM(REFP, KIND, SIZE, IOFF) 
   <type>  REFP(1) 
   INTEGER KIND, SIZE 
   <pointer> IOFF 
 – FORTRAN: gets a piece of shared memory for "kind" with "size" elements. 
 <type> is the reference type, such as REAL, INTEGER,... 
 KIND is one of (1,2,4,8,16) as the size of the reference type 
 SIZE is the number of elements to be allocated 
 <pointer> is a type large enough to hold an address: 
  For 32-bit, this can be INTEGER*4. 
  For 64-bit, this can be INTEGER*8. 
 Reference to the allocated shared memory is done by REFP(IOFF) as the first 

element. The function may be used after SMP_FORK, but should be called by all the 
processes with the same requested size. 

   SUBROUTINE SMP_GETSHMEMP(KIND, SIZE, IPTR) 
   INTEGER KIND, SIZE 
   POINTER IPTR 
 – FORTRAN: gets a piece of shared memory for "kind" with "size" elements. 
 KIND is one of (1,2,4,8,16) as the size of the reference type 
 SIZE is the number of elements to be allocated 
 IPTR is the returned pointer that points to the allocated memory. 
 This function can be used on platform that supports the Cray pointer. Typically a 

variable is declared as 
  <type>   VAR(1) 
 POINTER (IPTR,VAR) 
 Reference to the allocated shared memory is done by VAR(1) as the first element. The 

approach works for both 32-bit and 64-bit platforms. 
 
   int SMP_Pagesize(void); 

   INTEGER FUNCTION SMP_PAGESIZE() 
 – returns the memory page size in bytes. 
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B.5.   Lock and Barrier 

   void SMP_Setlock(void); 

   SUBROUTINE SMP_SETLOCK 
 – waits for the SMPlib global lock and sets the lock when it is available. 
 
   void SMP_Unsetlock(void); 

   SUBROUTINE SMP_UNSETLOCK 
 – releases the SMPlib global lock after it was set. 
 
   void SMP_Barrier(void); 

   SUBROUTINE SMP_BARRIER 
 – synchronizes all processes, including the master process, has to be called by each 

process. 
 
   int SMP_Testsignal(int node, int tid); 

   INTEGER FUNCTION SMP_TESTSIGNAL(NODE, TID) 
   INTEGER NODE, TID 
 – tests if a node is ready for signal from the current node. If node < 0, signal to any 

node. Returns the node number the signal will actually be sent to. The call ensures 
any previous signal sent to node from the current node has been taken. The second 
argument tid tags the signal to a particular thread. This function is always used 
together with SMP_Setsignal. 

 
   void SMP_Setsignal(int node, int tid); 

   SUBROUTINE SMP_SETSIGNAL(NODE, TID) 
   INTEGER NODE, TID 
 – sets a signal for node after SMP_Testsignal is called. The second argument tid 

tags the signal to a particular thread. 
 
   void SMP_Signal(int node, int tid); 

   SUBROUTINE SMP_SIGNAL(NODE, TID) 
   INTEGER NODE, TID 
 – sends a signal to node. If node < 0, signal to any node. The second argument tid 

tags the signal to a particular thread. This function is equivalent to 
SMP_Testsignal + SMP_Setsignal. 
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   int SMP_Testwait(int node, int tid); 

   INTEGER FUNCTION SMP_TESTWAIT(NODE, TID) 
   INTEGER NODE, TID 
 – waits for a signal from node. If node < 0, signal from any node. Returns the node 

number the signal is actually from. The second argument tid tags the signal to a 
particular thread. This function is always used together with SMP_Ackwait. 

 
   void SMP_Ackwait(int node, int tid); 

   SUBROUTINE SMP_ACKWAIT(NODE, TID) 
   INTEGER NODE, TID 
 – acknowledges the reception of a signal from node after SMP_Testwait is called. 

The second argument tid tags the signal to a particular thread. 
 
   void SMP_Wait(int node, int tid); 

   SUBROUTINE SMP_WAIT(NODE, TID) 
   INTEGER NODE, TID 
 – waits for a signal from node. If node < 0, signal from any node. The second 

argument tid tags the signal to a particular thread. This function is equivalent to 
SMP_Testwait + SMP_Ackwait. 

 

B.6.   Utility Routines 

   int SMP_Myid(void); 

   INTEGER FUNCTION SMP_MYID() 
 – returns the rank of the current process. 
 
   int SMP_Numprocs(void); 

   INTEGER FUNCTION SMP_NUMPROCS() 
 – returns the number of processes, including the master. 
 
   double SMP_Wtime(void); 

   DOUBLE PRECISION FUNCTION SMP_WTIME() 
 – gets wallclock time in seconds. 
 
   int SMP_Debug(int newflag); 

   INTEGER FUNCTION SMP_DEBUG(NEWFLAG) 
   INTEGER NEWFLAG 
 – resets the debug flag (0, 1, or 2, see B.1 for SMP_DEBUG). 
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The following routines define a set of timers. Maximum number of timers is 64. The "timer" 
field is from 1 to 64. The timer routines are not thread-safe. 

   void SMP_Timer_init(int timer); 

   SUBROUTINE SMP_TIMER_INIT(TIMER) 
   INTEGER TIMER 

– initializes a timer (if timer > 0) or all timers (if timer==0). The routine 

SMP_Init() initializes all timers. This function is used to reset a timer (to zero). 

   void SMP_Timer_start(int timer); 

   SUBROUTINE SMP_TIMER_START(TIMER) 
   INTEGER TIMER 

– starts a timer. 

   void SMP_Timer_stop(int timer); 

   SUBROUTINE SMP_TIMER_STOP(TIMER) 
   INTEGER TIMER 

– stops a timer. 

   double SMP_Timer_read(int timer); 

   DOUBLE PRECISION FUNCTION SMP_TIMER_READ(TIMER) 
   INTEGER TIMER 

– returns the current value of a timer in seconds.  The timer will be stopped first if it has 
not. 

   void SMP_Timer_string(int timer, char *str); 

   SUBROUTINE SMP_TIMER_STRING(TIMER, STR) 
   INTEGER TIMER 
   CHARACTER STR*(*) 

– defines a string for a timer. The string is used by SMP_Timer_print(). 

   void SMP_Timer_print(int timer); 

   SUBROUTINE SMP_TIMER_PRINT(TIMER) 
   INTEGER TIMER 

– prints a timer (if timer > 0) or all timers (if timer==0). 

 


